An Incremental Approach to Scheduling during Overloads in Real-Time Systems
نویسندگان
چکیده
In this paper we propose a novel scheduling framework for a real-time environment that experiences dynamic changes. This framework is capable of adjusting the system workload in incremental steps under overloaded conditions such that the most critical tasks in the system are always scheduled and the total value of the system is m i m i z e d . Each task has an assigned criticality value and consists of two parts, a mandatory part and an optional part. A timely answer is available after the mandatory part completes execution and its value may be improved by executing the entire optional part. Optional parts can be discarded in overloaded conditions. The process of selecting optional parts to discard while maximizing the value of the system requires the exploration of a potentially large number of combinations. Since this process is too time consuming to be computed on-line, an approximate algorithm is executed incrementally whenever the processor would otherwise be idle, progressively rejning the quality of the solution. This criteria allows the scheduler to handle overloads with low cost while maximizing the use of the available resources and without jeopardizing the temporal constraints of the most critical tasks in the system. Simulation results show that few stages of the algorithm need to be executed for achieving a performance with near-optimal results.
منابع مشابه
A Dynamic Scheduling Algorithm for Real-Time Expert Systems
Computational characteristics of real-time expert systems have been the subject of research for more than a decade. The computation time required to complete inferences carried out by expert systems present high variability, which usually leads to severe under-utilization of resources when the design of the schedule of inferences is based on their worst computation times. Moreover, the event-ba...
متن کاملSafety Verification of Real Time Systems Serving Periodic Devices
In real-time systems response to a request from a controlled object must be correct and timely. Any late response to a request from such a device might lead to a catastrophy. The possibility of a task overrun, i.e., missing the deadline for completing a requested task, must be checked and removed during the design of such systems. Safe design of real-time systems running periodic tasks under th...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کامل